via xymtex 1

1 About XyMTeX

1.1 Introduction

To typeset chemical documents containing structural formulas within the TeX/LaTeX processing environment, Shinsaku Fujita developed and distributed the XyMTeX system (first version was released in 1993), where the LaTeX picture environment was used as a tool for drawing. Thereafter, the XyMTeX Version 2.00 (1998) supported the XyM Notation which were proposed as a linear notation of structural formulas. The XyMTeX Version 3.00 (2000) supported the size reduction of structural formulas, which expanded the scope of the XyMTeX system.

1.2 Getting XyMTeX

You can download the latest XyMTeX package here:

http://imt.chem.kit.ac.jp/fujita/fujitas3/xymtex/indexe.html

1.3 Installing XyMTeX

After having unzipped the xymtex archive, copy the xymtex directory to your texmf-path. Under Mac OS X and DarwinPorts it is /opt/share/texmf-dist/tex/latex/, under Debian Linux it is the directory /usr/share/texmf-tetex/tex/latex/.

In the parent directory (/opt/share/texmf-dist in Mac OS X and /usr/share/texmf-tetex in Debian Linux) you'll have to run mktexlsr afterwards to get the xymtex package listed.

Simply add usepackage {xymtex} to your latex-header and you're finished.

2 Chemical Formulas

2 Typesetting chemical formulas

2.1 Glucose

You can draw glucose in two conformations. You can either user heterocycles (which is really complex) or you can use the pyranose function which comes with xymtex.

Abbildung 1: β -D-Glucose

There's also a second way to display glucose, the fischer projection. You can use the function tetrahedral for that. I encountered the problem that the formula was somehow shifted. By using raisebox{?pt} you can shift the function in its correct position.

Abbildung 2: β -D-Glucose

via xymtex 3

2.2 Purine Nucleobases

XyMTeX also has predefined functions for purines and pyrimidines.

Abbildung 3: Adenine

Abbildung 4: Guanine

Abbildung 5: Cytosine

Abbildung 6: Thymine

Abbildung 7: Uracile

2.3 Nucleotides

You can substitute functions via adding (y1) to the position where the new substituent of the formula should be connected. Duplicate nesting is possible.

Abbildung 8: ATP (Adenosintriphosphate)